欧美三区_成人在线免费观看视频_欧美极品少妇xxxxⅹ免费视频_a级毛片免费播放_鲁一鲁中文字幕久久_亚洲一级特黄

Password Attacker

系統(tǒng) 2012 0

Passwords are widely used in our lives: for ATMs, online forum logins, mobile device unlock and door access. Everyone cares about password security. However, attackers always find ways to steal our passwords. Here is one possible situation:

Assume that Eve, the attacker, wants to steal a password from the victim Alice. Eve cleans up the keyboard beforehand. After Alice types the password and leaves, Eve collects the fingerprints on the keyboard. Now she knows which keys are used in the password. However, Eve won't know how many times each key has been pressed or the order of the keystroke sequence.

To simplify the problem, let's assume that Eve finds Alice's fingerprints only occurs on M keys. And she knows, by another method, that Alice's password contains N characters. Furthermore, every keystroke on the keyboard only generates a single, unique character. Also, Alice won't press other irrelevant keys like 'left', 'home', 'backspace' and etc.

Here's an example. Assume that Eve finds Alice's fingerprints on M=3 key '3', '7' and '5', and she knows that Alice's password is N=4-digit in length. So all the following passwords are possible: 3577, 3557, 7353 and 5735. (And, in fact, there are 32 more possible passwords.)

However, these passwords are not possible:

1357 // There is no fingerprint on key '1'
3355 // There is fingerprint on key '7',
so '7' must occur at least once.
357 // Eve knows the password must be a 4-digit number.
With the information, please count that how many possible passwords satisfy the statements above. Since the result could be large, please output the answer modulo 1000000007(109+7).

Input

The first line of the input gives the number of test cases, T.
For the next T lines, each contains two space-separated numbers M and N, indicating a test case.

Output

For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the total number of possible passwords modulo 1000000007(109+7).

Limits

Small dataset

T = 15.
1 ≤ M ≤ N ≤ 7.
Large dataset

T = 100.
1 ≤ M ≤ N ≤ 100.
Sample

Input
4
1 1
3 4
5 5
15 15

Output?

Case #1: 1
Case #2: 36
Case #3: 120
Case #4: 674358851

google在線筆試題。這題一直沒做出來。有人說有公式,看到大牛們提交的代碼又覺得像是dp。后來學了生成函數(shù)之后,覺得應該是一道指數(shù)型生成函數(shù)的題。

      
         1
      
       #include <iostream>


      
         2
      
       #include <cstdio>


      
         3
      
       #include <vector>


      
         4
      
      
         5
      
      
        using
      
      
        namespace
      
      
         std;


      
      
         6
      
      
        const
      
      
        double
      
       epi = 
      
        0.000001
      
      
        ;


      
      
         7
      
      
        int
      
       frac(
      
        int
      
      
         k) {


      
      
         8
      
      
        int
      
       ans = 
      
        1
      
      
        ;


      
      
         9
      
      
        for
      
       (
      
        int
      
       i = 
      
        2
      
      ; i <= k; ++
      
        i) {


      
      
        10
      
               ans *=
      
         i;


      
      
        11
      
      
            }


      
      
        12
      
      
        return
      
      
         ans;


      
      
        13
      
      
        }


      
      
        14
      
      
        15
      
      
        int
      
       enumPassword(
      
        int
      
       n, 
      
        int
      
      
         m) {


      
      
        16
      
           vector<vector<
      
        double
      
      > > 
      
        params
      
      (
      
        2
      
      , vector<
      
        double
      
      >(n + 
      
        1
      
      , 
      
        0
      
      
        ));


      
      
        17
      
      
        params
      
      [
      
        0
      
      ][
      
        0
      
      ] = 
      
        1
      
      
        ;


      
      
        18
      
      
        int
      
       cur = 
      
        0
      
      , next = 
      
        1
      
      
        ;


      
      
        19
      
      
        20
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i < m; ++
      
        i) {


      
      
        21
      
      
        params
      
      [next].assign(n + 
      
        1
      
      , 
      
        0
      
      
        );


      
      
        22
      
      
        for
      
       (
      
        int
      
       j = 
      
        0
      
      ; j <= n; ++
      
        j) {


      
      
        23
      
      
        if
      
       (
      
        params
      
      [cur][j] < epi) 
      
        continue
      
      
        ;


      
      
        24
      
      
        for
      
       (
      
        int
      
       k = 
      
        1
      
      ; k + j <= n; ++
      
        k) {


      
      
        25
      
      
        params
      
      [next][k + j] = 
      
        params
      
      [next][k + j] + 
      
        params
      
      [cur][j] * 
      
        1
      
       /
      
         frac(k);


      
      
        26
      
      
                    }


      
      
        27
      
      
                }


      
      
        28
      
               cur = !cur; next = !
      
        next;


      
      
        29
      
      
            }


      
      
        30
      
      
        31
      
      
        return
      
      
        params
      
      [cur][n] *
      
         frac(n);


      
      
        32
      
      
        }


      
      
        33
      
      
        34
      
      
        int
      
       main(
      
        int
      
       argc, 
      
        char
      
      **
      
         argv) {


      
      
        35
      
      
        if
      
       (argc < 
      
        2
      
      ) 
      
        return
      
       -
      
        1
      
      
        ;


      
      
        36
      
           freopen(argv[
      
        1
      
      ], 
      
        "
      
      
        r
      
      
        "
      
      
        , stdin);


      
      
        37
      
      
        int
      
      
         test; 


      
      
        38
      
           scanf(
      
        "
      
      
        %d
      
      
        "
      
      , &
      
        test);


      
      
        39
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i < test; ++
      
        i) {


      
      
        40
      
      
        int
      
      
         m, n;


      
      
        41
      
               scanf(
      
        "
      
      
        %d%d
      
      
        "
      
      , &m, &
      
        n);


      
      
        42
      
               cout << 
      
        "
      
      
        Case #
      
      
        "
      
       << i + 
      
        1
      
       << 
      
        "
      
      
        : 
      
      
        "
      
       << enumPassword(n, m) <<
      
         endl;


      
      
        43
      
      
            }


      
      
        44
      
      
        45
      
      
        return
      
      
        0
      
      
        ;


      
      
        46
      
       }
    

但是數(shù)太大,要取模。除操作不能直接除模。

在網上搜到一個定理:

定理12.2:設$a_n$,$b_n$的指數(shù)生成函數(shù)分別為f(x)和g(x),則:

$f(x)*g(x) = \sum_{n=0}^{\infty}c_n\frac{x^n}{n!}, c_n = \sum_{k=0}^{n}C(n,k)a_kb_{n-k}$。

對應到我們這里,Line 25里就變成params[cur][j]*1*C(j+k, k),params[cur][j]對應的是$\frac{x^j}{j!}$的系數(shù),1對應的是$\frac{x^k}{k!}$,所以乘以的就是C(j+k, k)了。

代碼如下:

      
         1
      
       #include <iostream>


      
         2
      
       #include <cstdio>


      
         3
      
       #include <vector>


      
         4
      
      
         5
      
      
        using
      
      
        namespace
      
      
         std;


      
      
         6
      
      
        enum
      
       {MOD = 
      
        1000000007
      
      
        };


      
      
         7
      
       typedef 
      
        long
      
      
        long
      
      
         llong;


      
      
         8
      
       llong combination[
      
        100
      
      ][
      
        100
      
      
        ];


      
      
         9
      
      
        void
      
      
         getCombination() {


      
      
        10
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i <= 
      
        100
      
      ; ++
      
        i) {


      
      
        11
      
      
        for
      
       (
      
        int
      
       j = 
      
        0
      
      ; j <= i; ++
      
        j) {


      
      
        12
      
      
        if
      
       (j == 
      
        0
      
      
        ) { 


      
      
        13
      
                   combination[i][j] = 
      
        1
      
      
        ;


      
      
        14
      
                   } 
      
        else
      
      
         {


      
      
        15
      
                       combination[i][j] = (combination[i - 
      
        1
      
      ][j] + combination[i - 
      
        1
      
      ][j - 
      
        1
      
      ]) %
      
         MOD;


      
      
        16
      
      
                    }


      
      
        17
      
      
                }


      
      
        18
      
      
            }


      
      
        19
      
      
        }


      
      
        20
      
      
        21
      
       llong enumPassword(
      
        int
      
       n, 
      
        int
      
      
         m) {


      
      
        22
      
           vector<vector<llong> > 
      
        params
      
      (
      
        2
      
      , vector<llong>(n + 
      
        1
      
      , 
      
        0
      
      
        ));


      
      
        23
      
      
        params
      
      [
      
        0
      
      ][
      
        0
      
      ] = 
      
        1
      
      
        ;


      
      
        24
      
      
        int
      
       cur = 
      
        0
      
      , next = 
      
        1
      
      
        ;


      
      
        25
      
      
        26
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i < m; ++
      
        i) {


      
      
        27
      
      
        params
      
      [next].assign(n + 
      
        1
      
      , 
      
        0
      
      
        );


      
      
        28
      
      
        for
      
       (
      
        int
      
       j = 
      
        0
      
      ; j <= n; ++
      
        j) {


      
      
        29
      
      
        if
      
       (
      
        params
      
      [cur][j] == 
      
        0
      
      ) 
      
        continue
      
      
        ;


      
      
        30
      
      
        for
      
       (
      
        int
      
       k = 
      
        1
      
      ; k + j <= n; ++
      
        k) {


      
      
        31
      
      
        params
      
      [next][k + j] = (
      
        params
      
      [next][k + j] + 
      
        params
      
      [cur][j] * combination[j + k][k]) %
      
         MOD;


      
      
        32
      
      
                    }


      
      
        33
      
      
                }


      
      
        34
      
               cur = !cur; next = !
      
        next;


      
      
        35
      
      
            }


      
      
        36
      
      
        37
      
      
        return
      
      
        params
      
      
        [cur][n];


      
      
        38
      
      
        }


      
      
        39
      
      
        40
      
      
        int
      
       main(
      
        int
      
       argc, 
      
        char
      
      **
      
         argv) {


      
      
        41
      
      
        if
      
       (argc < 
      
        2
      
      ) 
      
        return
      
       -
      
        1
      
      
        ;


      
      
        42
      
           freopen(argv[
      
        1
      
      ], 
      
        "
      
      
        r
      
      
        "
      
      
        , stdin);


      
      
        43
      
      
        if
      
       (argc >= 
      
        3
      
      ) freopen(argv[
      
        2
      
      ], 
      
        "
      
      
        w
      
      
        "
      
      
        , stdout);


      
      
        44
      
      
            getCombination();


      
      
        45
      
      
        int
      
      
         test; 


      
      
        46
      
           scanf(
      
        "
      
      
        %d
      
      
        "
      
      , &
      
        test);


      
      
        47
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i < test; ++
      
        i) {


      
      
        48
      
      
        int
      
      
         m, n;


      
      
        49
      
               scanf(
      
        "
      
      
        %d%d
      
      
        "
      
      , &m, &
      
        n);


      
      
        50
      
      
        //
      
      
        cout << "Case #" << i + 1 << ": " << enumPassword(n, m) << endl;
      
      
        51
      
               printf(
      
        "
      
      
        Case #%d: %lld\n
      
      
        "
      
      , i + 
      
        1
      
      
        , enumPassword(n, m));


      
      
        52
      
      
            }


      
      
        53
      
      
        54
      
      
        return
      
      
        0
      
      
        ;


      
      
        55
      
       }
    

注意這里求組合數(shù)要用遞推公式來求,這樣可以在運算中取模,避免溢出。

$C(n, m) = C(n - 1, m) + C(n - 1, m - 1)$。

以后指數(shù)型生成函數(shù)的題都可以這么做。get!

Password Attacker


更多文章、技術交流、商務合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯(lián)系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發(fā)表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 九月婷婷开心九月 | 国产成人自拍视频在线观看 | 久久免费国产视频 | 亚洲欧美国产精品久久 | 永久免费在线播放 | 欧美日韩综合视频 | 国产成人无码区免费内射一片色欲 | 国产中文字幕一区 | 在线观看国产视频 | 多女多p多杂交视频在线观看 | 成人免费视频网站在线观看 | 国产精品视频成人 | 香港三级日本三级韩国a | 婷婷五 在线播放 | av毛片| 无码AV免费一区二区三区A片 | 日韩精品一区二区三区中文字幕 | 国产小视频免费在线观看 | 国产999在线 | 欧美成年网站 | 男女全黄做爰视频免费看 | 久久观看免费视频 | 国产成人免费高清激情明星 | 国产无圣光高清一区二区 | 久久视屏这里只有精品6国产 | 久综合色 | 香蕉视频免费网站 | 成年网站视频在线观看 | 亚洲欧美在线观看 | 成人免费视频网址 | 日本欧美一二三区色视频 | 国产一毛片 | 国产精品福利短视在线播放频 | 免费精品美女久久久久久久久久 | 欧美 国产 综合 | 中文字幕在线一区二区三区 | 日本高清在线中文字幕网 | 91精品成人免费国产 | 亚洲三级视频 | 夜色成人性y| 成人app色深夜福利 欧美电影一区 |