問題背景:有一批需要處理的文件,對于每一個文件,都需要調用同一個函數進行處理,相當耗時。
有沒有加速的辦法呢?當然有啦,比如說你將這些文件分成若干批,每一個批次都調用自己寫的python腳本進行處理,這樣同時運行若干個python程序也可以進行加速。
有沒有更簡單的方法呢?比如說,我一個運行的一個程序里面,同時分為多個線程,然后進行處理?
大概思路:將這些個文件路徑的list,分成若干個,至于分成多少,要看自己cpu核心有多少,比如你的cpu有32核的,理論上就可以加速32倍。
代碼如下:
# -*-coding:utf-8-*-
import numpy as np
from glob import glob
import math
import os
import torch
from tqdm import tqdm
import multiprocessing
label_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/label.txt'
file_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/distortion_image'
save_path = '/home/ying/data/shiyongjie/distortion_datasets/new_distortion_dataset/train/flow_field'
r_d_max = 128
image_index = 0
txt_file = open(label_path)
file_list = txt_file.readlines()
txt_file.close()
file_label = {}
for i in file_list:
i = i.split()
file_label[i[0]] = i[1]
r_d_max = 128
eps = 1e-32
H = 256
W = 256
def generate_flow_field(image_list):
for image_file_path in ((image_list)):
pixel_flow = np.zeros(shape=tuple([256, 256, 2])) # 按照pytorch中的grid來寫
image_file_name = os.path.basename(image_file_path)
# print(image_file_name)
k = float(file_label[image_file_name])*(-1)*1e-7
# print(k)
r_u_max = r_d_max/(1+k*r_d_max**2) # 計算出畸變校正之后的對角線的理論長度
scale = r_u_max/128 # 將這個長度壓縮到256的尺寸,會有一個scale,實際上這里寫128*sqrt(2)可能會更加直觀
for i_u in range(256):
for j_u in range(256):
x_u = float(i_u - 128)
y_u = float(128 - j_u)
theta = math.atan2(y_u, x_u)
r = math.sqrt(x_u ** 2 + y_u ** 2)
r = r * scale # 實際上得到的r,即沒有resize到256×256的圖像尺寸size,并且帶入公式中
r_d = (1.0 - math.sqrt(1 - 4.0 * k * r ** 2)) / (2 * k * r + eps) # 對應在原圖(畸變圖)中的r
x_d = int(round(r_d * math.cos(theta)))
y_d = int(round(r_d * math.sin(theta)))
i_d = int(x_d + W / 2.0)
j_d = int(H / 2.0 - y_d)
if i_d < W and i_d >= 0 and j_d < H and j_d >= 0: # 只有求的的畸變點在原圖中的時候才進行賦值
value1 = (i_d - 128.0)/128.0
value2 = (j_d - 128.0)/128.0
pixel_flow[j_u, i_u, 0] = value1 # mesh中存儲的是對應的r的比值,在進行畸變校正的時候,給定一張這樣的圖,進行找像素即可
pixel_flow[j_u, i_u, 1] = value2
# 保存成array格式
saved_image_file_path = os.path.join(save_path, image_file_name.split('.')[0] + '.npy')
pixel_flow = pixel_flow.astype('f2') # 將數據的格式轉換成float16類型, 節省空間
# print(saved_image_file_path)
# print(pixel_flow)
np.save(saved_image_file_path, pixel_flow)
return
if __name__ == '__main__':
file_list = glob(file_path + '/*.JPEG')
m = 32
n = int(math.ceil(len(file_list) / float(m))) # 向上取整
result = []
pool = multiprocessing.Pool(processes=m) # 32進程
for i in range(0, len(file_list), n):
result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],)))
pool.close()
pool.join()
在上面的代碼中,函數
generate_flow_field(image_list)
需要傳入一個list,然后對于這個list進行操作,之后對操作的結果進行保存
所以,只需要將你需要處理的多個文件,切分成盡量等大小的list,然后再對每一個list,開一個線程進行處理即可
上面的主函數:
if __name__ == '__main__':
file_list = glob(file_path + '/*.JPEG') # 將文件夾下所有的JPEG文件列成一個list
m = 32 # 假設CPU有32個核心
n = int(math.ceil(len(file_list) / float(m))) # 每一個核心需要處理的list的數目
result = []
pool = multiprocessing.Pool(processes=m) # 開32線程的線程池
for i in range(0, len(file_list), n):
result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 對每一個list都用上面我們定義的函數進行處理
pool.close() # 處理結束之后,關閉線程池
pool.join()
主要是這樣的兩行代碼,一行是
pool = multiprocessing.Pool(processes=m) # 開32線程的線程池
用來開辟線程池
另外一行是
result.append(pool.apply_async(generate_flow_field, (file_list[i: i+n],))) # 對每一個list都用上面我們定義的函數進行處理
對于線程池,用apply_async()同時跑generate_flow_field這個函數,傳入的參數是:file_list[i: i+n]
實際上apply_async()這個函數的作用是所有的線程同時跑,速度是比較快的。
擴展:
Python文件處理之文件寫入方式與寫緩存來提高速度和效率
Python的open的寫入方式有:
write(str):將str寫入文件
writelines(sequence of strings):寫多行到文件,參數為可迭代對象
f = open('blogCblog.txt', 'w') #首先先創建一個文件對象,打開方式為w
f.writelines('123456') #用readlines()方法寫入文件
運行上面結果之后,可以看到blogCblog.txt文件有123456內容,這里需要注意的是,mode為‘w'模式(寫模式),再來看下面代碼:
f = open('blogCblog.txt', 'w') #首先先創建一個文件對象,打開方式為w
f.writelines(123456) #用readlines()方法寫入文件
運行上面代碼之后會報一個TypeError,這是因為writelines傳入的參數并不是一個可迭代的對象。
以上就是關于python頻繁寫入文件怎么提速的相關知識點以及擴展內容,感謝大家的閱讀。
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061
微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元

