黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

Python Numpy庫datetime類型的處理詳解

系統 2299 0

前言

關于時間的處理,Python中自帶的處理時間的模塊就有time 、datetime、calendar,另外還有擴展的第三方庫,如dateutil等等。通過這些途徑可以隨心所欲地用Python去處理時間。當我們用NumPy庫做數據分析時,如何轉換時間呢?

在NumPy 1.7版本開始,它的核心數組(ndarray)對象支持datetime相關功能,由于'datetime'這個數據類型名稱已經在Python自帶的datetime模塊中使用了, NumPy中時間數據的類型稱為'datetime64'。

單個時間格式字符串轉換為numpy的datetime對象,可使用datetime64實例化一個對象,如下所示:

            
#時間字符串轉numpy.datetime64
datetime_nd=np.datetime64('2019-01-01')
print(type(datetime_nd))#
            
          

反過來numpy的datetime對象轉換為時間格式字符串,可使用datetime_as_string()函數,如下所示:

            
#numpy.datetime64轉時間字符串
datetime_str=np.datetime_as_string(datetime_nd)
print(type(datetime_str))#
            
          

從時間格式字符串數組去創建numpy的datetime對象數組(array)時,可以直接使用numpy.array()函數,指定dtype為'datetime64',這樣的話數組中的元素為'datetime64'類型,如下所示:

            
datetime_array = np.array(['2019-01-05','2019-01-02','2019-01-03'], dtype='datetime64')
print(datetime_array)#['2019-01-05' '2019-01-02' '2019-01-03']
print(type(datetime_array))#
            
              
print(type(datetime_array[0]))#
              
            
          

也可以通過numpy.arange()函數,給定時間起始范圍去創建numpy的datetime對象數組(array),指定dtype為'datetime64'時默認以日為時間間隔,如下所示:

            
datetime_array = np.arange('2019-01-05','2019-01-10', dtype='datetime64')
print(datetime_array)#['2019-01-05' '2019-01-06' '2019-01-07' '2019-01-08' '2019-01-09']
          

設定numpy.arange()函數中的dtype參數,可以調整時間的間隔,比如以年、月、周,甚至小時、分鐘、毫秒程度的間隔生成時間數組,這點和Python的datetime模塊是一樣的,分為了date單位和time單位。如下所示:

Python Numpy庫datetime類型的處理詳解_第1張圖片

            
# generate year datetime array
datetime_array = np.arange('2018-01-01','2020-01-01', dtype='datetime64[Y]')
print(datetime_array)#['2018' '2019']
# generate month datetime array
datetime_array = np.arange('2019-01-01','2019-10-01', dtype='datetime64[M]')
print(datetime_array)#['2019-01' '2019-02' '2019-03' '2019-04' '2019-05' '2019-06' '2019-07' '2019-08' '2019-09']
# generate week datetime array
datetime_array = np.arange('2019-01-05','2019-02-10', dtype='datetime64[W]')
print(datetime_array)#['2019-01-03' '2019-01-10' '2019-01-17' '2019-01-24' '2019-01-31']
# generate ms datetime array
datetime_array = np.arange('2019-01-05','2019-01-10', dtype='datetime64[ms]')
print(datetime_array)
#['2019-01-05T00:00:00.000' '2019-01-05T00:00:00.001'
# '2019-01-05T00:00:00.002' ... '2019-01-09T23:59:59.997'
# '2019-01-09T23:59:59.998' '2019-01-09T23:59:59.999']
          

將numpy.datetime64轉化為datetime格式轉換為datetime格式,可使用astype()方法轉換數據類型,如下所示:

            
#numpy.datetime64轉化為datetime格式
datetime_df=datetime_nd.astype(datetime.datetime)
print(type(datetime_df))#
            
          

另外,numpy也提供了datetime.timedelta類的功能,支持兩個時間對象的運算,得到一個時間單位形式的數值。因為numpy的核心數組(ndarray)對象沒有物理量系統(physical quantities system),所以創建了timedelta64數據類型來補充datetime64。datetime和timedelta結合提供了更簡單的datetime計算方法。如下所示:

            
# numpy.datetime64 calculations
datetime_delta = np.datetime64('2009-01-01') - np.datetime64('2008-01-01')
print(datetime_delta)#366 days
print(type(datetime_delta))#
            
              
datetime_delta = np.datetime64('2009') + np.timedelta64(20, 'D')
print(datetime_delta)#2009-01-21
datetime_delta = np.datetime64('2011-06-15T00:00') + np.timedelta64(12, 'h')
print(datetime_delta)#2011-06-15T12:00
datetime_delta = np.timedelta64(1,'W') / np.timedelta64(1,'D')
print(datetime_delta)#7.0
            
          

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論