黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

python

系統 2178 0

MinMaxScaler.fit_transform()

            
              Init signature: MinMaxScaler(feature_range=(0, 1), copy=True)
Docstring:     
Transforms features by scaling each feature to a given range.

This estimator scales and translates each feature individually such
that it is in the given range on the training set, e.g. between
zero and one.

The transformation is given by::

    X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
    X_scaled = X_std * (max - min) + min

where min, max = feature_range.

The transformation is calculated as::

    X_scaled = scale * X + min - X.min(axis=0) * scale
    where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))

This transformation is often used as an alternative to zero mean,
unit variance scaling.

Read more in the :ref:`User Guide 
              
                `.

Parameters
----------
feature_range : tuple (min, max), default=(0, 1)
    Desired range of transformed data.

copy : boolean, optional, default True
    Set to False to perform inplace row normalization and avoid a
    copy (if the input is already a numpy array).

Attributes
----------
min_ : ndarray, shape (n_features,)
    Per feature adjustment for minimum. Equivalent to
    ``min - X.min(axis=0) * self.scale_``

scale_ : ndarray, shape (n_features,)
    Per feature relative scaling of the data. Equivalent to
    ``(max - min) / (X.max(axis=0) - X.min(axis=0))``

    .. versionadded:: 0.17
       *scale_* attribute.

data_min_ : ndarray, shape (n_features,)
    Per feature minimum seen in the data

    .. versionadded:: 0.17
       *data_min_*

data_max_ : ndarray, shape (n_features,)
    Per feature maximum seen in the data

    .. versionadded:: 0.17
       *data_max_*

data_range_ : ndarray, shape (n_features,)
    Per feature range ``(data_max_ - data_min_)`` seen in the data

    .. versionadded:: 0.17
       *data_range_*

Examples
--------
>>> from sklearn.preprocessing import MinMaxScaler
>>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
>>> scaler = MinMaxScaler()
>>> print(scaler.fit(data))
MinMaxScaler(copy=True, feature_range=(0, 1))
>>> print(scaler.data_max_)
[ 1. 18.]
>>> print(scaler.transform(data))
[[0.   0.  ]
 [0.25 0.25]
 [0.5  0.5 ]
 [1.   1.  ]]
>>> print(scaler.transform([[2, 2]]))
[[1.5 0. ]]

See also
--------
minmax_scale: Equivalent function without the estimator API.

Notes
-----
NaNs are treated as missing values: disregarded in fit, and maintained in
transform.

For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py

                
                  `.
File:           c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\preprocessing\data.py
Type:           type
Subclasses:     

                
              
            
          

參考文章: 有關StandardScaler的transform和fit_transform方法
https://www.jianshu.com/p/2a635d9e894d


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論