黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

Spark學習實例(Python):RDD執行 Actions

系統 1927 0

上面我們學習了RDD如何轉換,即一個RDD轉換成另外一個RDD,但是轉換完成之后并沒有立刻執行,僅僅是記住了數據集的邏輯操作,只有當執行了Action動作之后才會真正觸發Spark作業,進行算子的計算

執行操作有:

  • reduce(func)
  • collect()
  • count()
  • first()
  • take(n)
  • takeSample(withReplacement, num, [seed])
  • takeOrdered(n, [ordering])
  • saveAsTextFile(path)
  • countByKey()
  • foreach(func)

reduce:使用函數func聚合數據集元素,返回執行結果

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.reduce(lambda x,y : x+y))
    # 15
    sc.stop()
            
          

collect:將計算結果回收到Driver端,當數據量較大時執行會造成oom

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.collect())
    # [1, 2, 3, 4, 5]
    sc.stop()
            
          

count:返回數據集元素個數,執行過程中會將數據回收到Driver端進行統計

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.count())
    # 5
    sc.stop()
            
          

first:返回數據集中的第一個元素,類似于take(1)

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.first())
    # 1
    sc.stop()
            
          

take:返回數據集中的前n個元素的數組

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.take(3))
    # [1, 2, 3]
    sc.stop()
            
          

takeSample:返回數據集中num個隨機元素,seed指定隨機數生成器種子

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    print(rdd.takeSample(True, 3, 1314))
    # [5, 2, 3]
    sc.stop()
            
          

takeOrdered:使用自然排序或自定義比較器返回數據集中的前n個元素

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [5, 1, 4, 2, 3]
    rdd = sc.parallelize(data)
    print(rdd.takeOrdered(3))
    # [1, 2, 3]
    print(rdd.takeOrdered(3, key=lambda x: -x))
    # [5, 4, 3]
    sc.stop()
            
          

saveAsTextFile:將數據集元素作為文本文件寫入文件系統(如:本地文件系統,HDFS等)

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(data)
    rdd.saveAsTextFile("file:///home/data")
    sc.stop()
            
          

countByKey:統計(K,V)對中每個K的個數

            
              from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [('a', 1), ('b', 2), ('a', 3)]
    rdd = sc.parallelize(data)
    print(sorted(rdd.countByKey().items()))
    # [('a', 2), ('b', 1)]
    sc.stop()
            
          

foreach:對RDD每個元素執行指定函數

            
              from pyspark import SparkContext

def f(x):
    print(x)

if __name__ == '__main__':
    sc = SparkContext(appName="rddAction", master="local[*]")
    data = [1, 2, 3]
    rdd = sc.parallelize(data)
    rdd.foreach(f)
    # 1 2 3
    sc.stop()
            
          

至此,所有action動作學習完畢

?

Spark學習目錄:

  • Spark學習實例1(Python):單詞統計 Word Count
  • Spark學習實例2(Python):加載數據源Load Data Source
  • Spark學習實例3(Python):保存數據Save Data
  • Spark學習實例4(Python):RDD轉換 Transformations
  • Spark學習實例5(Python):RDD執行 Actions
  • Spark學習實例6(Python):共享變量Shared Variables
  • Spark學習實例7(Python):RDD、DataFrame、DataSet相互轉換
  • Spark學習實例8(Python):輸入源實時處理 Input Sources Streaming
  • Spark學習實例9(Python):窗口操作 Window Operations

更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦?。?!

發表我的評論
最新評論 總共0條評論