黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

Python apply函數

系統 2126 0

Python apply函數

?

1、介紹

apply 函數是 pandas 里面所有函數中自由度最高的函數。該函數如下:

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

該函數最有用的是第一個參數,這個參數是函數,相當于C/C++的函數指針。

這個函數需要自己實現,函數的傳入參數根據axis來定,比如axis = 1,就會把一行數據作為Series的數據 結構傳入給自己實現的函數中,我們在函數中實現對Series不同屬性之間的計算,返回一個結果,則apply函數 會自動遍歷每一行DataFrame的數據,最后將所有結果組合成一個Series數據結構并返回。

2、樣例

            
              import numpy as np
import pandas as pd


f = lambda x: x.max()-x.min()

df = pd.DataFrame(np.random.randn(4,3),columns=list('bde'),index=['utah', 'ohio', 'texas', 'oregon'])
print(df)

t1 = df.apply(f)
print(t1)

t2 = df.apply(f, axis=1)
print(t2)
            
          

輸出結果如下所示:

            
                             b         d         e
utah    1.106486  0.101113 -0.494279
ohio    0.955676 -1.889499  0.522151
texas   1.891144 -0.670588  0.106530
oregon -0.062372  0.991231  0.294464

b    1.953516
d    2.880730
e    1.016430
dtype: float64

utah      1.600766
ohio      2.845175
texas     2.561732
oregon    1.053603
dtype: float64
            
          

3、性能比較

            
              df = pd.DataFrame({'a': np.random.randn(6),
                   'b': ['foo', 'bar'] * 3,
                   'c': np.random.randn(6)})


def my_test(a, b):
    return a + b


print(df)


df['Value'] = df.apply(lambda row: my_test(row['a'], row['c']), axis=1) # 方法1
print(df)

df['Value2'] = df['a'] + df['c']  # 方法2
print(df)
            
          

輸出結果如下:

            
                        a    b         c
0 -1.194841  foo  1.648214
1 -0.377554  bar  0.496678
2  1.524940  foo -1.245333
3 -0.248150  bar  1.526515
4  0.283395  foo  1.282233
5  0.117674  bar -0.094462

          a    b         c     Value
0 -1.194841  foo  1.648214  0.453374
1 -0.377554  bar  0.496678  0.119124
2  1.524940  foo -1.245333  0.279607
3 -0.248150  bar  1.526515  1.278365
4  0.283395  foo  1.282233  1.565628
5  0.117674  bar -0.094462  0.023212

          a    b         c     Value    Value2
0 -1.194841  foo  1.648214  0.453374  0.453374
1 -0.377554  bar  0.496678  0.119124  0.119124
2  1.524940  foo -1.245333  0.279607  0.279607
3 -0.248150  bar  1.526515  1.278365  1.278365
4  0.283395  foo  1.282233  1.565628  1.565628
5  0.117674  bar -0.094462  0.023212  0.023212
            
          

注意:當數據量很大時,對于簡單的邏輯處理建議方法2(個人處理幾百M數據集時,方法1花時200s左右,方法2花時10s)!!!


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論