黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

Spark-SQL-Python編程

系統 2012 0

使用Pycharm來實現Spark-SQL。

            
              from pyspark import Row
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StringType, StructType

if __name__ == "__main__":
    spark = SparkSession\
            .builder\
            .appName("app name")\
            .master("local")\
            .getOrCreate()
    sc = spark.sparkContext
    line = sc.textFile("D:\\data\\demo.txt").map(lambda x: x.split('|'))
    # personRdd = line.map(lambda p: Row(id=p[0], name=p[1], age=int(p[2])))
    # personRdd_tmp = spark.createDataFrame(personRdd)
    # personRdd_tmp.show()

    #讀取數據
    schemaString = "id name age"
    fields = list(map(lambda fieldName: StructField(fieldName, StringType(), nullable=True), schemaString.split(" ")))
    schema = StructType(fields)

    rowRDD = line.map(lambda attributes: Row(attributes[0], attributes[1],attributes[2]))
    peopleDF = spark.createDataFrame(rowRDD, schema)
    peopleDF.createOrReplaceTempView("people")
    results = spark.sql("SELECT * FROM people")
    results.rdd.map(lambda attributes: "name: " + attributes[0] + "," + "age:" + attributes[1]).foreach(print)

    # SQL風格語法
    # personRdd_tmp.registerTempTable("person")
    # spark.sql("select * from person where age >= 20 order by age desc limit 2").show()
	#方法風格語法
    # personRdd_tmp.select("name").show()
    # personRdd_tmp.select(personRdd_tmp['name'], personRdd_tmp['age'] + 1).show()
    # personRdd_tmp.filter(personRdd_tmp['age'] > 21).show()
    # personRdd_tmp.groupBy("age").count().show()

    
    # personRdd_tmp.createOrReplaceTempView("people")
    # sqlDF = spark.sql("SELECT * FROM people")
    # sqlDF.show()

    # personRdd_tmp.createGlobalTempView("people")
    # spark.sql("SELECT * FROM global_temp.people").show()
    #
    # spark.newSession().sql("SELECT * FROM global_temp.people").show()

	# 保存為指定格式
    # people = line.map(lambda p: (p[0],p[1], p[2].strip()))
    # schemaString = "id name age"
    #
    # fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
    # # # 通過StructType直接指定每個字段的schema
    # schema = StructType(fields)
    # schemaPeople = spark.createDataFrame(people, schema)
    # schemaPeople.createOrReplaceTempView("people")
    # results = spark.sql("SELECT * FROM people")
    # results.write.json("D:\\code\\hadoop\\data\\spark\\day4\\personout.txt")
    # results.write.save("D:\\code\\hadoop\\data\\spark\\day4\\personout1")

    # results.show()

            
          

?


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論