導(dǎo)入相關(guān)包
import time
import pydash
import base64
import requests
from lxml import etree
from aip import AipFace
from pathlib import Path
百度云 人臉檢測(cè) 申請(qǐng)信息
#唯一必須填的信息就這三行
APP_ID = "xxxxxxxx"
API_KEY = "xxxxxxxxxxxxxxxx"
SECRET_KEY = "xxxxxxxxxxxxxxxx"
# 過(guò)濾顏值閾值,存儲(chǔ)空間大的請(qǐng)隨意
BEAUTY_THRESHOLD = 55
AUTHORIZATION = "oauth c3cef7c66a1843f8b3a9e6a1e3160e20"
# 如果權(quán)限錯(cuò)誤,瀏覽器中打開(kāi)知乎,在開(kāi)發(fā)者工具復(fù)制一個(gè),無(wú)需登錄
# 建議最好換一個(gè),因?yàn)椴恢乐醯姆磁老x(chóng)策略,如果太多人用同一個(gè),可能會(huì)影響程序運(yùn)行
以下皆無(wú)需改動(dòng)
# 每次請(qǐng)求知乎的討論列表長(zhǎng)度,不建議設(shè)定太長(zhǎng),注意節(jié)操
LIMIT = 5
# 這是話題『美女』的 ID,其是『顏值』(20013528)的父話題
SOURCE = "19552207"
爬蟲(chóng)假裝下正常瀏覽器請(qǐng)求
USER_AGENT = "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/534.55.3 (KHTML, like Gecko) Version/5.1.5 Safari/534.55.3"
REFERER = "https://www.zhihu.com/topic/%s/newest" % SOURCE
# 某話題下討論列表請(qǐng)求 url
BASE_URL = "https://www.zhihu.com/api/v4/topics/%s/feeds/timeline_activity"
# 初始請(qǐng)求 url 附帶的請(qǐng)求參數(shù)
URL_QUERY = "?include=data%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.is_normal%2Ccomment_count%2Cvoteup_count%2Ccontent%2Crelevant_info%2Cexcerpt.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cvoteup_count%2Ccomment_count%2Cvoting%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Dpeople%29%5D.target.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dquestion%29%5D.target.comment_count&limit=" + str(
LIMIT)
HEADERS = {
"User-Agent": USER_AGENT,
"Referer": REFERER,
"authorization": AUTHORIZATION
指定 url,獲取對(duì)應(yīng)原始內(nèi)容 / 圖片
def fetch_image(url):
try:
response = requests.get(url, headers=HEADERS)
except Exception as e:
raise e
return response.content
指定 url,獲取對(duì)應(yīng) JSON 返回 / 話題列表
def fetch_activities(url):
try:
response = requests.get(url, headers=HEADERS)
except Exception as e:
raise e
return response.json()
處理返回的話題列表
def parser_activities(datums, face_detective):
for data in datums["data"]:
target = data["target"]
if "content" not in target or "question" not in target or "author" not in target:
continue
html = etree.HTML(target["content"])
seq = 0
title = target["question"]["title"]
author = target["author"]["name"]
images = html.xpath("http://img/@src")
for image in images:
if not image.startswith("http"):
continue
image_data = fetch_image(image)
score = face_detective(image_data)
if not score:
continue
name = "{}--{}--{}--{}.jpg".format(score, author, title, seq)
seq = seq + 1
path = Path(__file__).parent.joinpath("image").joinpath(name)
try:
f = open(path, "wb")
f.write(image_data)
f.flush()
f.close()
print(path)
time.sleep(2)
except Exception as e:
continue
if not datums["paging"]["is_end"]:
return datums["paging"]["next"]
else:
return None
初始化顏值檢測(cè)工具
def init_detective(app_id, api_key, secret_key):
client = AipFace(app_id, api_key, secret_key)
options = {"face_field": "age,gender,beauty,qualities"}
def detective(image):
image = str(base64.b64encode(image), "utf-8")
response = client.detect(str(image), "BASE64", options)
response = response.get("result")
if not response:
return
if (not response) or (response["face_num"] == 0):
return
face_list = response["face_list"]
if pydash.get(face_list, "0.face_probability") < 0.6:
return
if pydash.get(face_list, "0.beauty") < BEAUTY_THRESHOLD:
return
if pydash.get(face_list, "0.gender.type") != "female":
return
score = pydash.get(face_list, "0.beauty")
return score
return detective
程序入口
def main():
face_detective = init_detective(APP_ID, API_KEY, SECRET_KEY)
url = BASE_URL % SOURCE + URL_QUERY
while url is not None:
datums = fetch_activities(url)
url = parser_activities(datums, face_detective)
time.sleep(5)
if __name__ == '__main__':
main()
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061
微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫(xiě)作最大的動(dòng)力,如果您喜歡我的文章,感覺(jué)我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元

