黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

利用Python畫ROC曲線和AUC值計算

系統 1974 0

前言

ROC(Receiver Operating Characteristic)曲線和AUC常被用來評價一個二值分類器(binary classifier)的優劣。這篇文章將先簡單的介紹ROC和AUC,而后用實例演示如何python作出ROC曲線圖以及計算AUC。

AUC介紹

AUC(Area Under Curve)是機器學習二分類模型中非常常用的評估指標,相比于F1-Score對項目的不平衡有更大的容忍性,目前常見的機器學習庫中(比如scikit-learn)一般也都是集成該指標的計算,但是有時候模型是單獨的或者自己編寫的,此時想要評估訓練模型的好壞就得自己搞一個AUC計算模塊,本文在查詢資料時發現libsvm-tools有一個非常通俗易懂的auc計算,因此摳出來用作日后之用。

AUC計算

AUC的計算分為下面三個步驟:

??? 1、計算數據的準備,如果模型訓練時只有訓練集的話一般使用交叉驗證的方式來計算,如果有評估集(evaluate)一般就可以直接計算了,數據的格式一般就是需要預測得分以及其目標類別(注意是目標類別,不是預測得到的類別)

??? 2、根據閾值劃分得到橫(X:False Positive Rate)以及縱(Y:True Positive Rate)點

??? 3、將坐標點連成曲線之后計算其曲線下面積,就是AUC的值

直接上python代碼

            
#! -*- coding=utf-8 -*-
import pylab as pl
from math import log,exp,sqrt


evaluate_result="you file path"
db = [] #[score,nonclk,clk]
pos, neg = 0, 0 
with open(evaluate_result,'r') as fs:
 for line in fs:
 nonclk,clk,score = line.strip().split('\t')
 nonclk = int(nonclk)
 clk = int(clk)
 score = float(score)
 db.append([score,nonclk,clk])
 pos += clk
 neg += nonclk
 
 

db = sorted(db, key=lambda x:x[0], reverse=True)

#計算ROC坐標點
xy_arr = []
tp, fp = 0., 0.  
for i in range(len(db)):
 tp += db[i][2]
 fp += db[i][1]
 xy_arr.append([fp/neg,tp/pos])

#計算曲線下面積
auc = 0.  
prev_x = 0
for x,y in xy_arr:
 if x != prev_x:
 auc += (x - prev_x) * y
 prev_x = x

print "the auc is %s."%auc

x = [_v[0] for _v in xy_arr]
y = [_v[1] for _v in xy_arr]
pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))
pl.xlabel("False Positive Rate")
pl.ylabel("True Positive Rate")
pl.plot(x, y)# use pylab to plot x and y
pl.show()# show the plot on the screen
          

輸入的數據集可以參考svm預測結果

其格式為:

            
nonclk \t clk \t score
          

其中:
??? 1、nonclick:未點擊的數據,可以看做負樣本的數量

??? 2、clk:點擊的數量,可以看做正樣本的數量

??? 3、score:預測的分數,以該分數為group進行正負樣本的預統計可以減少AUC的計算量

運行的結果為:

利用Python畫ROC曲線和AUC值計算_第1張圖片

如果本機沒安裝pylab可以直接注釋依賴以及畫圖部分

注意

上面貼的代碼:

??? 1、只能計算二分類的結果(至于二分類的標簽隨便處理)

??? 2、上面代碼中每個score都做了一次閾值,其實這樣效率是相當低的,可以對樣本進行采樣或者在計算橫軸坐標時進行等分計算

總結

以上就是這篇文章的全部內容,希望本文的內容能對大家的學習或者工作帶來一定的幫助,如果有疑問大家可以留言交流。


更多文章、技術交流、商務合作、聯系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發表我的評論
最新評論 總共0條評論