0.0015)dw=learnp(w,P,[],[],[],[],e,[],[],[],[],[])db=learnp(b,ones(1,5),[],[],[],[],e,[],[],[],[],[])%每次學(xué)習(xí)完后,會返回需要的調(diào)整權(quán)值" />

黄色网页视频 I 影音先锋日日狠狠久久 I 秋霞午夜毛片 I 秋霞一二三区 I 国产成人片无码视频 I 国产 精品 自在自线 I av免费观看网站 I 日本精品久久久久中文字幕5 I 91看视频 I 看全色黄大色黄女片18 I 精品不卡一区 I 亚洲最新精品 I 欧美 激情 在线 I 人妻少妇精品久久 I 国产99视频精品免费专区 I 欧美影院 I 欧美精品在欧美一区二区少妇 I av大片网站 I 国产精品黄色片 I 888久久 I 狠狠干最新 I 看看黄色一级片 I 黄色精品久久 I 三级av在线 I 69色综合 I 国产日韩欧美91 I 亚洲精品偷拍 I 激情小说亚洲图片 I 久久国产视频精品 I 国产综合精品一区二区三区 I 色婷婷国产 I 最新成人av在线 I 国产私拍精品 I 日韩成人影音 I 日日夜夜天天综合

matlab-神經(jīng)網(wǎng)絡(luò)-感知機(6)

系統(tǒng) 1922 0

?

%控制感知機的學(xué)習(xí)過程,學(xué)習(xí)AND運算
P=[0 1 0 1 1;1 1 1 0 0];
T=[0 1 0 0 0];
net = newp([0 1;0 1],1);
net=init(net);

y=sim(net,P);
e=T-y;
while (mae(e)>0.0015)
?? dw=learnp(w,P,[],[],[],[],e,[],[],[],[],[])
?? db=learnp(b,ones(1,5),[],[],[],[],e,[],[],[],[],[])
?? %每次學(xué)習(xí)完后,會返回需要的調(diào)整權(quán)值矩陣和閾值矩陣
?? w=w+dw
?? b=b+db
?? net.iw{1,1}=w
?? net.b{1}=b??
?? y=sim(net,P);
?? e=T-y
end

?

?

learnp用于感知器神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值的學(xué)習(xí),學(xué)習(xí)規(guī)則是調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)平均絕對誤差性能最小,以便實現(xiàn)輸入向量的分類

help learnp
?LEARNP Perceptron weight/bias learning function.
?
?? Syntax
??
???? [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
???? [db,LS] = learnp(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
???? info = learnp(code)
?
?? Description
?
???? LEARNP is the perceptron weight/bias learning function.
?
???? LEARNP(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
?????? W? - SxR weight matrix (or b, an Sx1 bias vector).
?????? P? - RxQ input vectors (or ones(1,Q)).
?????? Z? - SxQ weighted input vectors.
?????? N? - SxQ net input vectors.
?????? A? - SxQ output vectors.
?????? T? - SxQ layer target vectors.
?????? E? - SxQ layer error vectors.
?????? gW - SxR gradient with respect to performance.
?????? gA - SxQ output gradient with respect to performance.
?????? D? - SxS neuron distances.
?????? LP - Learning parameters, none, LP = [].
?????? LS - Learning state, initially should be = [].
???? and returns,
?????? dW - SxR weight (or bias) change matrix.
?????? LS - New learning state.
?
???? LEARNP(CODE) returns useful information for each CODE string:
?????? 'pnames'??? - Returns names of learning parameters.
?????? 'pdefaults' - Returns default learning parameters.
?????? 'needg'???? - Returns 1 if this function uses gW or gA.
?
?? Examples
?
???? Here we define a random input P and error E to a layer
???? with a 2-element input and 3 neurons.
?
?????? p = rand(2,1);
?????? e = rand(3,1);
?
???? Since LEARNP only needs these values to calculate a weight
???? change (see Algorithm below), we will use them to do so.
?
?????? dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])
?
?? Network Use
?
???? You can create a standard network that uses LEARNP with NEWP.
?
???? To prepare the weights and the bias of layer i of a custom network
???? to learn with LEARNP:
???? 1) Set NET.trainFcn to 'trainb'.
??????? (NET.trainParam will automatically become TRAINB's default parameters.)
???? 2) Set NET.adaptFcn to 'trains'.
??????? (NET.adaptParam will automatically become TRAINS's default parameters.)
???? 3) Set each NET.inputWeights{i,j}.learnFcn to 'learnp'.
??????? Set each NET.layerWeights{i,j}.learnFcn to 'learnp'.
??????? Set NET.biases{i}.learnFcn to 'learnp'.
??????? (Each weight and bias learning parameter property will automatically
??????? become the empty matrix since LEARNP has no learning parameters.)
?
???? To train the network (or enable it to adapt):
???? 1) Set NET.trainParam (NET.adaptParam) properties to desired values.
???? 2) Call TRAIN (ADAPT).
?
???? See NEWP for adaption and training examples.
?
?? Algorithm
?
???? LEARNP calculates the weight change dW for a given neuron from the
???? neuron's input P and error E according to the perceptron learning rule:
?
?????? dw =? 0,? if e =? 0
????????? =? p', if e =? 1
????????? = -p', if e = -1
?
???? This can be summarized as:
?
?????? dw = e*p'

?

?

?

?

?

?

?

?

?

?

>> plotpv(P,T)
>> plotpc(net.iw{1,1},net.b{1})


matlab-神經(jīng)網(wǎng)絡(luò)-感知機(6)
?

?

matlab-神經(jīng)網(wǎng)絡(luò)-感知機(6)


更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯(lián)系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦?。。?/p>

發(fā)表我的評論
最新評論 總共0條評論